SOFTWARES

Artificial Intelligence Is Meaningless If The Data Is Not Correct

The consulting companys warns that artificial intelligence implementation processes must have a good basis to be able to develop effectively. For this reason, the data must be coherent from the outset, in order to be able to carry out advanced analytical processes.

Many companies have information models that are not consistent and are based on wrong assumptions. This complicates the implementation process and spends 80% of the effort to debug the information, while only 20% goes to the analytical process.

Incorrect base data

The consulting firms has announced that 77% of companies believe that their final result may be affected by the existence of inaccurate or incomplete data. In addition, 66% of companies lack a consistent and centralized approach based on data quality.

The data must be coherent from the outset, in order to be able to carry out advanced analytical processes

Let’s assume a natural intelligence system. Can you or someone make the right decisions if your information base is wrong? No. Well, the same thing happens with artificial intelligence systems ”says experts.

In this context, as the expert warns, many companies, when launching projects, invest a lot of time and effort without obtaining a good result; This is because their information models are not coherent enough, and not only that, but they perceive that many of the assumptions they made decisions about are incorrect. These types of situations are very common in environments where company integration processes have occurred, there are different reporting or analytical systems/systems with data from different sources.

50% of companies do not have a correct database

Data inconsistency appears when analysts appreciate difficulty comparing data or encounter “holes” in the information. This is why it usually happens in 50% of companies. All of this makes advanced analytics processes very difficult or even masks serious business problems. It is possible that, on many occasions, the results with which they work in sales or marketing are different from those obtained by the financial sector. This situation can cause that in the projects of implantation of advanced reporting systems or predictive analysis, 80% of the effort is dedicated to purifying the information and only 20% to the analytical process.

Savings of companies by purifying information

Businesses can save if they manage to debug information. By simply simplifying the analysis processes, companies can appreciate the savings. Furthermore, in this way the entire organization works under the same principles. And it is that thanks to the appearance of RPA-type tools and advanced information analysis, the information purification processes have improved significantly.

TechReviewsCorner

Tech Reviews Corner is a place where one can find all types of News, Updates, Facts about Technology, Business, Marketing, Gadgets, and Other Softwares & Applications

Recent Posts

The Comprehensive Guide to Being a Gimkit Host

Gimkit is an online fun game which combines both entertainment and learning. In this generation…

8 hours ago

Whole life insurance explained: is it the right policy for you?

A whole life insurance policy offers coverage to the concerned policyholder for the entire life,…

5 days ago

Pedrovazpaulo Operations Consulting – A Comprehensive Guide

Pedrovazpaulo is a consulting firm that helps businesses and startups to grow. Nowadays we are…

5 days ago

How Medical Bills Are Handled After An Accident In Phoenix

Accidents can be overwhelming. You're suddenly faced with medical bills and questions about payment. Understanding…

6 days ago

Practical Case Study: Migrate SQL Server to PostgreSQL

This article explores migration of 200GB SQL Server database used in e-commerce application to PostgreSQL…

1 week ago

185.63.2253.200: Everything About This IP Address

In this digital Era IP Address is one of the main components in the internet…

2 weeks ago